Homotopy (limits And) Colimits
نویسنده
چکیده
These notes were written to accompany two talks given in the Algebraic Topology and Category Theory Proseminar at the University of Chicago in Winter 2009. When a category has some notion of limits and colimits associated to it, its ordinary limits and colimits are not necessarily homotopically meaningful. We describe a notion of a “homotopy colimit” for two sorts of categories with a homotopy theory: categories enriched in simplicial sets and model categories. For simplicial categories, we define an object with a “homotopical universal property” using the well-known bar construction. For model categories, we define a homotopy colimit functor to be a derived functor of the usual colimit functor. Finally, we note that in the setting of a simplicial model category, these two approaches coincide and refer the reader to appropriate sources.
منابع مشابه
Calculating Limits and Colimits in Pro-categories
We present some constructions of limits and colimits in pro-categories. These are critical tools in several applications. In particular, certain technical arguments concerning strict pro-maps are essential for a theorem about étale homotopy types. Also, we show that cofiltered limits in pro-categories commute with finite colimits.
متن کاملHomotopy Limits and Colimits and Enriched Homotopy Theory
Homotopy limits and colimits are homotopical replacements for the usual limits and colimits of category theory, which can be approached either using classical explicit constructions or the modern abstract machinery of derived functors. Our first goal is to explain both and show their equivalence. Our second goal is to generalize this result to enriched categories and homotopy weighted limits, s...
متن کاملSe p 20 06 Cofibrations in Homotopy Theory
We define Anderson-Brown-Cisinski (ABC) cofibration categories, and construct homotopy colimits of diagrams of objects in ABC cofibraction categories. Homotopy colimits for Quillen model categories are obtained as a particular case. We attach to each ABC cofibration category a right derivator. A dual theory is developed for homotopy limits in ABC fibration categories and for left derivators. Th...
متن کاملHomotopy Limits and Colimits in Nature A Motivation for Derivators
An introduction to the notions of homotopy limit and colimit is given. It is explained how they can be used to neatly describe the “old” distinguished triangles and shift functors of derived categories resp. cofiber and fiber sequences in algebraic topology. One of the goals is to motivate the language of derivators from the perspective of classical homological algebra. Another one is to give e...
متن کاملHomotopy Locally Presentable Enriched Categories
We develop a homotopy theory of categories enriched in a monoidal model category V. In particular, we deal with homotopy weighted limits and colimits, and homotopy local presentability. The main result, which was known for simplicially-enriched categories, links homotopy locally presentable V-categories with combinatorial model V-categories, in the case where all objects of V are cofibrant.
متن کامل